
Perfect Abstractions

Description Niftkit V3 Audit

Copyright Copyright © 2022 - Perfect Abstractions LLC

Table of Contents

1 Niftykit-Contracts-V3 Audit
1.0.1 Project description

1.0.2 Objectives

1.0.3 Scope

2 Annex
2.1 EIP-2535 Diamonds compliancy

2.2 Replay attacks possible

2.3 NiftyKitV3 Withdraw function could be called by anybody

2.4 The

I Medium Risk

3 Edition facet signature is replayable
3.0.1 Recommendation

II Low Risk

4 Apps can be made un-upgradable
4.0.1 Recommendation

5 Collection fees can be changed after mint has started
5.0.1 Recommendation

6 Collection parameters can be changed after mint has started
6.0.1 Recommendation

7 One step ownership of collections
7.0.1 Recommendation

8 NiftyKitV3 and NiftyKitAppRegistry initialize can be frontrun

III Informational

9 Base facet and app facets override same contracts which is prone to bugs
9.0.1 Recommendations

10 BaseFacet version is not used
10.0.1 Recommendation

11 App facets structs can be optimized

12 Some unused code can be removed
12.1 NiftyKitV3.sol

12.2 NiftyKitV3.sol

12.3 Unused functions

13 Low code coverage
13.0.1 Recommendation

14 Function parameters shadowing contract storage variables
14.0.1 Recommendation

15 Missing zero address checks in NiftyKitV3.sol
15.0.1 Recommendation

16 Lack of documentation and comments
16.0.1 Recommendation

17 Disclosure

1 Niftykit-Contracts-V3 Audit

Perfect Abstractions conducted a smart contract audit of Niftykit's Niftykit-Contracts-V3 from 7 March 2023 to 28
March 2023.

This audit was carried out in 2 stages. The 1st stage based on the hash
1f0cd5c59429c230fd85fd97a0ea0fb0483533a4, and the 2nd stage starting on 15 March and based on the hash
e88f77b124d513ee859ad56a106ecb88e131f7a0, allowing further analysis of the codebase.

In this document we will mainly detail the 2nd part of the audit (git hash
e88f77b124d513ee859ad56a106ecb88e131f7a0) because it concerns the current code version. However, we will list in

the appendix certain elements highlighted and �xed in the 1st part of the audit to show the corrected vulnerabilities,
certain optimizations carried out and a relevant overhaul of the design allowing compliance with the EIP-2535
Diamonds.

Auditors:

Thibaud Catz

Audit report reviewed by Nick Mudge.

1.0.1 Project description

NiftyKit is a no-code platform for NFT creators. It allows people to create, manage and sell NFTs. This new version
of NiftyKit implements EIP-2535 Diamonds, allowing it to easily add or remove functionality for NFT collections. The
codebase is modular and well written.

1.0.2 Objectives

1. Find bugs, ine�ciencies and security vulnerabilities in the code base.

2. Make recommendations concerning bugs, ine�ciencies and security vulnerabilities found as well as other
recommendations that may improve the code base.

1.0.3 Scope

The following �les were audited (hash e88f77b124d513ee859ad56a106ecb88e131f7a0):

contracts/NiftyKitAppRegistry.sol

contracts/NiftyKitV3.sol

contracts/apps/ape/ApeDropFacet.sol

contracts/apps/ape/ApeDropStorage.sol

contracts/apps/blockTokens/BlockTokensFacet.sol

contracts/apps/drop/DropFacet.sol

contracts/apps/drop/DropStorage.sol

https://www.perfectabstractions.com/
https://github.com/niftykit-inc/niftykit-contracts-v3/
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/NiftyKitAppRegistry.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/NiftyKitV3.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/ape/ApeDropFacet.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/ape/ApeDropStorage.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/blockTokens/BlockTokensFacet.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/drop/DropFacet.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/drop/DropStorage.sol

contracts/apps/edition/EditionFacet.sol

contracts/apps/edition/EditionStorage.sol

contracts/apps/example/ExampleFacet.sol

contracts/apps/example/ExampleStorage.sol

contracts/apps/operatorControls/OperatorControlsFacet.sol

contracts/apps/royaltyControls/RoyaltyControlsFacet.sol

contracts/diamond/BaseFacet.sol

contracts/diamond/BaseStorage.sol

contracts/diamond/DiamondCollection.sol

contracts/diamond/DiamondLoupeFacet.sol

contracts/interfaces/IDiamond.sol

contracts/interfaces/IDiamondCut.sol

contracts/interfaces/IDiamondLoupe.sol

contracts/interfaces/IDropKitPass.sol

contracts/interfaces/IERC165.sol

contracts/interfaces/IERC173.sol

contracts/interfaces/INiftyKitAppRegistry.sol

contracts/interfaces/INiftyKitV3.sol

contracts/internals/InternalERC721AUpgradeable.sol

contracts/internals/InternalOwnable.sol

contracts/internals/InternalOwnableRoles.sol

contracts/internals/MinimalOwnable.sol

contracts/internals/MinimalOwnableRoles.sol

contracts/libraries/LibDiamond.sol

contracts/mocks/MockERC20.sol

contracts/mocks/MockOperator.sol

https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/edition/EditionFacet.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/edition/EditionStorage.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/example/ExampleFacet.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/example/ExampleStorage.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/operatorControls/OperatorControlsFacet.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/apps/royaltyControls/RoyaltyControlsFacet.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/diamond/BaseFacet.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/diamond/BaseStorage.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/diamond/DiamondCollection.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/diamond/DiamondLoupeFacet.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/interfaces/IDiamond.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/interfaces/IDiamondCut.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/interfaces/IDiamondLoupe.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/interfaces/IDropKitPass.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/interfaces/IERC165.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/interfaces/IERC173.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/interfaces/INiftyKitAppRegistry.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/interfaces/INiftyKitV3.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/internals/InternalERC721AUpgradeable.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/internals/InternalOwnable.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/internals/InternalOwnableRoles.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/internals/MinimalOwnable.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/internals/MinimalOwnableRoles.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/libraries/LibDiamond.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/mocks/MockERC20.sol
https://github.com/niftykit-inc/niftykit-contracts-v3/blob/b934d9bd94d83b46ac7fc64b59ae807919726585/contracts/mocks/MockOperator.sol

2 Annex

In the 1st part of the audit from 7 March to 14 March, some issues were found and �xed.

We present the most notable ones in this annex.

2.1 EIP-2535 Diamonds compliancy

See EIP-2535 Diamonds Implementation Points.

Immutable functions are external functions de�ned directly in a diamond proxy contract or inherited by it. The EIP-
2535 Diamonds standard requires information about immutable functions be returned by the loupe functions and
emitted in the DiamondCut event.

Information about immutable functions in the diamond proxy contract (DiamondCollection.sol) were not
returned by the loupe functions and were not emitted in the DiamondCut event. This was �xed by putting all the
immutable functions in a separate facet (BaseFacet.sol) which is now cut in the diamond proxy constructor.

The �x also made the code clearer, more modular and upgradable.

2.2 Replay attacks possible

Signatures in NiftyKitV3.sol and EditionFacet.sol were replayable on another chain. ChainId parameter has
been added which �xed the issue.

2.3 NiftyKitV3 Withdraw function could be called by anybody

This was a low issue because Ether would be sent to treasury and not the transaction sender. But we can imagine a
scenario where treasury would be changed (because compromised for example), and the current treasury address
would frontrun the setTreasury function by calling Withdraw just before. By doing so, the compromised treasury
would get the ethers in the contract before being prevented from doing it.

It has been changed to OnlyOwner.

2.4 The preventTransfers modi�er could not block tokens if TransferMode
is OperatorsOnly

It was due to some logic issue in the modi�er which has been �xed.

https://eips.ethereum.org/EIPS/eip-2535#implementation-points

I. Medium Risk

3 Edition facet signature is replayable

Fixed according to the recommendation.

In EditionFacet.sol , signature can be replayed in certain cases.

editionId is incremented at each new edition. edition.nonce starts at zero for each new edition and can be
incremented to invalidate a signature.

As the data used to make the hash is abi.encodePacked(editionId + edition.nonce, block.chainid) , some
combinations of editionId and edition.nonce will recover to the same signer.

For example editionId = 0 and edition.nonce = 1 ,

will be replayable if editionId = 1 and edition.nonce = 0 , because the 0 + 1 == 1 + 0 . So the signature could
be replayed with the other combination.

A replay of the transaction on another Edition means someone could give themselves permission to mint
illegitimately.

3.0.1 Recommendation

I see two options:

Use a global nonce instead of a per Edition nonce, so that editionId + edition.nonce will never be repeated
across the Editions

Use abi.encodePacked(editionId,edition.nonce, block.chainid) instead of abi.encodePacked(editionId +
edition.nonce, block.chainid)

Medium Risk

Fixed

 function _requireSignature(

 EditionStorage.Edition storage edition,

 uint256 editionId,

 bytes calldata signature

) internal view {

 require(

 keccak256(

 abi.encodePacked(editionId + edition.nonce, block.chainid)

).toEthSignedMessageHash().recover(signature) == edition.signer,

 "Invalid signature"

);

 }

II. Low Risk

4 Apps can be made un-upgradable

On the app facets, there is a version number which is a uint8 :

One can upgrade an app by using a superior version number:

But if the uint8 maximum value is used (255), it won't be possible to upgrade the app anymore, as new version
must be greater than previous.

It could be intended behavior to provide a way to make an app un-upgradable, but in that case it's missing
documentation about it.

4.0.1 Recommendation

Force version incremental values or document the fact that version numbers can be skipped and that a value of
255 will prevent an app from being upgradable.

Low Risk

 struct App {

 address implementation;

 bytes4 interfaceId;

 bytes4[] selectors;

 uint8 version;

 }

require(

 version > _apps[name].version,

 "NiftyKitAppRegistry: Version must be greater than previous"

);

5 Collection fees can be changed after mint has started

In NiftyKitV3.sol , a collection feeType and feeRate can be changed anytime including after minting has
started.

It means it's possible that people mint the same collection with different prices.

5.0.1 Recommendation

I would suggest not to be able to change these values, once the presale or sale has started.

Low Risk

```

function setRate(address collection, uint256 rate) external onlyOwner {

Collection storage _collection = _collections[collection];

require(_collection.exists, "Does not exist");

_collection.feeRate = rate;

}

function setFeeType(address collection, FeeType feeType) external {

Collection storage _collection = _collections[collection];

require(_collection.exists, "Does not exist");

require(IERC173(collection).owner() == _msgSender(), "Not the owner");

_collection.feeType = feeType;

}

```


6 Collection parameters can be changed after mint has
started

In DropFacet.sol , ApeDropFacet.sol and EditionFacet.sol , the parameters can be changed after sale has
started.

For example in DropFacet.sol :

For example we can see that _price can be changed after mint has started, but also _maxPerMint ,
_maxPerWallet .

6.0.1 Recommendation

I would suggest not to be able to change these values, once the presale or sale has started.

Low Risk

function startSale(

 uint256 newMaxAmount,

 uint256 newMaxPerMint,

 uint256 newMaxPerWallet,

 uint256 newPrice,

 bool presale

) external onlyRolesOrOwner(BaseStorage.MANAGER_ROLE) {

 DropStorage.Layout storage layout = DropStorage.layout();

 layout._saleActive = true;

 layout._presaleActive = presale;

 layout._maxAmount = newMaxAmount;

 layout._maxPerMint = newMaxPerMint;

 layout._maxPerWallet = newMaxPerWallet;

 layout._price = newPrice;

}

7 One step ownership of collections

The functions enabling 2-step ownership have been removed from MinimalOwnable.sol which is inherited by the
DiamondCollection contract.

Low Risk

This has been done, to save gas when deploying a collection but transfer of ownership is a delicate and irreversible
process, it could leave a contract useless, with a two step process we add a guard against typos or bad copy/paste.

7.0.1 Recommendation

Add the functionality back or make sure it's not needed.

 /// @dev Request a two-step ownership handover to the caller.

 /// The request will be automatically expire in 48 hours (172800 seconds) by default.

 function requestOwnershipHandover() public payable virtual {

 unchecked {

 uint256 expires = block.timestamp + ownershipHandoverValidFor();

 /// @solidity memory-safe-assembly

 assembly {

 // Compute and set the handover slot to `expires`.

 mstore(0x0c, _HANDOVER_SLOT_SEED)

 mstore(0x00, caller())

 sstore(keccak256(0x0c, 0x20), expires)

 // Emit the {OwnershipHandoverRequested} event.

 log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())

 }

 }

 }

 /// @dev Cancels the two-step ownership handover to the caller, if any.

 function cancelOwnershipHandover() public payable virtual {

 /// @solidity memory-safe-assembly

 assembly {

 // Compute and set the handover slot to 0.

 mstore(0x0c, _HANDOVER_SLOT_SEED)

 mstore(0x00, caller())

 sstore(keccak256(0x0c, 0x20), 0)

 // Emit the {OwnershipHandoverCanceled} event.

 log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())

 }

 }

 /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.

 /// Reverts if there is no existing ownership handover requested by `pendingOwner`.

 function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {

 /// @solidity memory-safe-assembly

 assembly {

 // Compute and set the handover slot to 0.

 mstore(0x0c, _HANDOVER_SLOT_SEED)

 mstore(0x00, pendingOwner)

 let handoverSlot := keccak256(0x0c, 0x20)

 // If the handover does not exist, or has expired.

 if gt(timestamp(), sload(handoverSlot)) {

 mstore(0x00, _NO_HANDOVER_REQUEST_ERROR_SELECTOR)

 revert(0x1c, 0x04)

 }

 // Set the handover slot to 0.

 sstore(handoverSlot, 0)

 }

 _setOwner(pendingOwner);

 }

8 NiftyKitV3 and NiftyKitAppRegistry initialize can be frontrun

The functions are public which means anybody can run them (and take ownership).

It is not really bad, as these functions are called during deployment, but deployer has to make sure nobody frontrun
these calls during deployment. If initialize is frontrun, the deployer will have to redeploy because the frontrunner
will get the ownership of the contracts.

Low Risk

 function initialize() public initializer {

 __Ownable_init();

 }

 function initialize(address appRegistry_) public initializer {

 appRegistry = appRegistry;

 _treasury = _msgSender();

 __Ownable_init();

 }

III. Informational

9 Base facet and app facets override same contracts which is
prone to bugs

They both share some inheritance (because InternalOwnableRoles is an internal modi�ed version of
MinimalOwnableRoles and InternalERC721AUpgradeable is an internal modi�ed version of ERC721AUpgradeable).

This has been done so that app facets can easily call functions and use storage from ERC721A and OwnableRoles .

But this design requires attention to the risks of having an overriden function in BaseFacet which is not overriden in
an app facet. In that case, when a function is called from an app facet it would execute original code instead of
overriden one which is undesired and leads to bugs.

A bug has been found during the audit which was caused exactly by this fact.

The function:

Is an override in BaseFacet , allowing to have token ids starting at 1 instead of 0.

But the function was not overriden in facets, and the consequence was that max supply could not be reached.

Solution to the bug was to implement the same override in each app facet.

Fortunately, bug was found and �xed.

9.0.1 Recommendations

There are a few different ways to share code between facets. We recommend these ways:

Informational

contract BaseFacet is

 ERC721AUpgradeable,

 MinimalOwnableRoles,

 ERC2981,

 OperatorFilterer,

 DiamondLoupeFacet

{

contract DropFacet is InternalOwnableRoles, InternalERC721AUpgradeable {

contract ApeDropFacet is InternalOwnableRoles, InternalERC721AUpgradeable {

contract EditionFacet is InternalOwnableRoles, InternalERC721AUpgradeable {

 function _startTokenId() internal pure override returns (uint256) {

 return 1;

 }

Write internal functions in Solidity libraries and import and call those functions in facets.

Put common internal functions in a contract that is inherited by multiple facets. Internal functions de�ned with
the virtual keyword can be overriden. Consider not using the virtual keyword to ensure shared internal
functions are the same between facets.

More information about sharing code between facets and ways to do it are in this article: How to Share Functions
Between Facets of a Diamond

https://eip2535diamonds.substack.com/p/how-to-share-functions-between-facets

10 BaseFacet version is not used

The BaseFacet has a version number and can be upgraded.

But the version is only used to be stored in the DiamondCollection layout:

So any version can be set, a new BaseFacet could have same version as previous or a lower number, for example.

10.0.1 Recommendation

Make sure that an upgrade of BaseFacet has a superior version (as done for app facets).

Informational

 function setBase(

 address implementation,

 bytes4[] calldata interfaceIds,

 bytes4[] calldata selectors,

 uint8 version

) external onlyOwner {

 _base = Base({

 implementation: implementation,

 interfaceIds: interfaceIds,

 selectors: selectors,

 version: version

 });

 }

 layout._baseVersion = base.version;

11 App facets structs can be optimized

In ERC721A.sol source code, we can see the following assumption:

So as the max number of tokens per wallet is 2**64,

in DropStorage.sol :

and in EditionStorage.sol :

_maxPerMint and _maxPerWallet , could be uint64 .

It would save one slot in each struct which would save gas when accessing the structs.

If the change is made, the functions getting/setting the values should be modi�ed too, for example in
EditionFacet.sol :

 - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.

 struct Layout {

 mapping(address => uint256) _mintCount;

 bytes32 _merkleRoot;

 uint256 _dropRevenue;

 // Sales Parameters

 uint256 _maxAmount;

 uint256 _maxPerMint;

 uint256 _maxPerWallet;

 uint256 _price;

 // States

 bool _presaleActive;

 bool _saleActive;

 }

 struct Edition {

 string tokenURI;

 bytes32 merkleRoot;

 uint256 price;

 uint256 quantity;

 uint256 maxQuantity;

 uint256 maxPerWallet;

 uint256 maxPerMint;

 uint256 nonce;

 address signer;

 bool active;

 }

 function createEdition(

 string memory tokenURI,

 uint256 price,

 uint256 maxQuantity,

 uint256 maxPerWallet,

 uint256 maxPerMint

https://github.com/chiru-labs/ERC721A/blob/main/contracts/ERC721A.sol

12 Some unused code can be removed

12.1 NiftyKitV3.sol

import {ClonesUpgradeable}; can be removed as it's not used.
import {IDropKitPass}; can be removed as it's not used.

12.2 NiftyKitV3.sol

Here: contract NiftyKitV3 is INiftyKitV3, Initializable, OwnableUpgradeable

Initializable can be removed as it's inherited by OwnableUpgradeable

12.3 Unused functions

Here's a list of unused code. Removing this code will:

Help code readability

Increase control about what the code does or not

❌ InternalERC721AUpgradeable._nextTokenId() (contracts/internals/InternalERC721AUpgradeable.sol) is never
used

❌ InternalERC721AUpgradeable._baseURI() (contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ MinimalOwnableRoles._checkOwnerOrRoles(uint256) (contracts/internals/MinimalOwnableRoles.sol) is never
used

❌ InternalERC721AUpgradeable._unpackedOwnership(uint256)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalOwnable._setOwner(address) (contracts/internals/InternalOwnable.sol) is never used

❌ InternalERC721AUpgradeable._approve(address,uint256)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalOwnableRoles._grantRoles(address,uint256) (contracts/internals/InternalOwnableRoles.sol) is never
used

❌ InternalERC721AUpgradeable._exists(uint256) (contracts/internals/InternalERC721AUpgradeable.sol:438-445)
is never used

Informational

❌ InternalERC721AUpgradeable._ownershipAt(uint256) (contracts/internals/InternalERC721AUpgradeable.sol)
is never used

❌ InternalERC721AUpgradeable._toString(uint256) (contracts/internals/InternalERC721AUpgradeable.sol) is
never used

❌ MinimalOwnableRoles._checkRoles(uint256) (contracts/internals/MinimalOwnableRoles.sol) is never used

❌ InternalERC721AUpgradeable._setExtraDataAt(uint256,uint24)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalERC721AUpgradeable._totalBurned() (contracts/internals/InternalERC721AUpgradeable.sol) is never
used

❌ InternalERC721AUpgradeable.__ERC721A_init_unchained(string,string)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ LibDiamond.enforceIsContractOwner() (contracts/libraries/LibDiamond.sol) is never used

❌ InternalERC721AUpgradeable._numberBurned(address)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalERC721AUpgradeable._burn(uint256,bool) (contracts/internals/InternalERC721AUpgradeable.sol) is
never used

❌ InternalERC721AUpgradeable._isApprovedForAll(address,address)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalERC721AUpgradeable._getApprovedSlotAndAddress(uint256)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalERC721AUpgradeable._approve(address,uint256,bool)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalOwnableRoles._checkOwnerOrRoles(uint256) (contracts/internals/InternalOwnableRoles.sol) is never
used

❌ InternalERC721AUpgradeable._totalMinted() (contracts/internals/InternalERC721AUpgradeable.sol) is never
used

❌ InternalOwnableRoles._checkRoles(uint256) (contracts/internals/InternalOwnableRoles.sol) is never used

❌ InternalERC721AUpgradeable._ownershipOf(uint256) (contracts/internals/InternalERC721AUpgradeable.sol)
is never used

❌ InternalERC721AUpgradeable._isSenderApprovedOrOwner(address,address,address)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalERC721AUpgradeable._burn(uint256) (contracts/internals/InternalERC721AUpgradeable.sol) is never
used

❌ InternalERC721AUpgradeable._mintERC2309(address,uint256)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalERC721AUpgradeable._packedOwnershipOf(uint256)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalERC721AUpgradeable._ownerOf(uint256) (contracts/internals/InternalERC721AUpgradeable.sol) is
never used

❌ LibDiamond.contractOwner() (contracts/libraries/LibDiamond.sol) is never used

❌ InternalOwnableRoles._removeRoles(address,uint256) (contracts/internals/InternalOwnableRoles.sol) is never
used

❌ InternalERC721AUpgradeable._initializeOwnershipAt(uint256)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalOwnable._initializeOwner(address) (contracts/internals/InternalOwnable.sol) is never used

❌ InternalERC721AUpgradeable._numberMinted(address)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

❌ InternalERC721AUpgradeable.__ERC721A_init(string,string)
(contracts/internals/InternalERC721AUpgradeable.sol) is never used

13 Low code coverage

Code coverage is low on certain �les (mainly internal folder).

InternalERC721AUpgradeable.sol 20.54%

InternalOwnable.sol 0%

InternalOwnableRoles.sol 50%

MinimalOwnable.sol 0%

MinimalOwnableRoles.sol 22.22%

RoyaltyControlsFacet.sol 0%

Some of these are critical because there goal is:

To assure correct ownership of the contracts

The ERC721A part of the app facets

13.0.1 Recommendation

Add some tests to cover the whole code base.

Informational

14 Function parameters shadowing contract storage
variables

For example in BaseFacet.sol ,

name parameter shadows the ERC721Upgradable.name storage variable. It works without issues and it's not a
problem by itself, but it could mislead code readers or developers.

14.0.1 Recommendation

Consider using different function variable names that don't shadow storage variables.

Informational

 function installApp(bytes32 name) external onlyOwner {

 _installApp(name, address(0), "");

 }

 function installApp(bytes32 name, bytes memory data) external onlyOwner {

 _installApp(name, address(this), data);

 }

 function removeApp(bytes32 name) external onlyOwner {

 _removeApp(name, address(0), "");

 }

 function removeApp(bytes32 name, bytes memory data) external onlyOwner {

 _removeApp(name, address(this), data);

 }

15 Missing zero address checks in NiftyKitV3.sol

These function don't check that the input address is not zero. It's better not to be able to set a 0 address, than to
discover that it has been set by error.

15.0.1 Recommendation

Add zero-address check to these functions.

Informational

 function initialize(address appRegistry_) public initializer {

 appRegistry = appRegistry;

 _treasury = _msgSender();

 __Ownable_init();

 }

 function setTreasury(address newTreasury) external onlyOwner {

 _treasury = newTreasury;

 }

 function setSigner(address signer) external onlyOwner {

 _signer = signer;

 }

16 Lack of documentation and comments

Lack of function-level documentation (natspec) and an absence of comments in the code base.

16.0.1 Recommendation

Introducing comprehensive function-level documentation and comments throughout the code base will make it
signi�cantly easier to understand, reason about, maintain and update.

Informational

17 Disclosure

Perfect Abstractions LLC receives payment from clients (the “Clients”) for reviewing code and writing these reports
(the “Reports”).

The Reports are not an accusation or endorsement of any project or team, and the Reports do not guarantee the
security of any project. No Report provides any warranty or representation to any Third-Party in any respect,
including regarding the bugfree nature of code, the business model or proprietors of any such business model, and
the legal compliance of any such business. To remove any doubt, this Report is not investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or team, and it is not a
guarantee as to the security of the project.

The Reports are created for Clients and published with their consent. The scope of our review is limited to the code
or �les that are speci�ed in this report. The Solidity language remains under development and is subject to unknown
risks and �aws. The review does not extend to the compiler layer, or any other areas beyond speci�ed code that
could present security risks.

